hello world

stay foolish, stay hungry

数据结构--列表

形如 A1, A2, A3, … AN这样的表,表大小是 N,大小为 0 的表叫空表。对于空表之外的表 Ai+1 是 Ai 的后继,Ai-1 (i>=1) 是 Ai 的前驱。A1 是表的第一个元素,AN 是表的最后一个元素,A1 没有前驱元素,AN 也没有后继元素。

表的操作通常有:

  • 查找元素位置的操作find
  • 返回某个位置上的元素的操作findKth
  • 插入元素的操作insert
  • 删除元素的操作delete

表的实现

通过数组或slice实现

表的所有操作都可以基于数组或 slice 来实现,数组需要指定数组的大小,而 slice 底层数据也是数组,在空间上也有一定的局限性,特别是在处理未知大小的表的情况下。数组实现的表,find 操作基于实现的不同时间复杂度可能会是 O(N) 或者 O(logN),findKth 会是 O(1) 的操作,insertdelete 操作可能会有很大的开销,比如在表头位置插入新元素或删除表头元素,需要表中的所有元素顺移一位。

所以基于数组实现的表适合于随机读的情况,而不适于随机写的情况。

链表

为了避免 insert 和 delete 的开销,可以让表的元素不连续,链表(linked list)是由一系列不必在内存中连续的结构组成,每个结构包含表的元素和后继元素的指针(Next),表尾元素的 next 指针是 nil。

图 1

这种情况下,insert 和 delete 操作只需要修改 next 指针就可以实现了。比如删除「99」这个元素,只需要将「12」元素的 next 指针指向「37」元素就可以了;要在「99」元素和「37」元素中间插入元素,则需要将「99」元素的 next 指向新的元素,并且将新元素的 next 指向「37」。

有时候需要倒序遍历链表,单链表的方式显得无能为力,然而解决方法却很简单,只需要在链表的元素中添加一个指针域,指向链表元素的前驱即可。这样就形成了双向链表(double linked list)。

图 2

让链表的最后一个链表元素反过来指向第一个链表元素, 就形成了循环链表.

图 3

同样的, 如果让双向循环链表的最后一个元素的后继指针指向第一个元素, 第一个元素的前驱指针指向最后一个元素, 就形成了双向循环链表.

图 4

链表实现

golang 的 container/list/List.go 提供了一个双向链表的实现,如下是其中的部分代码。

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package list implements a doubly linked list.
//
// To iterate over a list (where l is a *List):
//  for e := l.Front(); e != nil; e = e.Next() {
//      // do something with e.Value
//  }
//
package list

// Element is an element of a linked list.
type Element struct {
    // Next and previous pointers in the doubly-linked list of elements.
    // To simplify the implementation, internally a list l is implemented
    // as a ring, such that &l.root is both the next element of the last
    // list element (l.Back()) and the previous element of the first list
    // element (l.Front()).
    next, prev *Element

    // The list to which this element belongs.
    list *List

    // The value stored with this element.
    Value interface{}
}

// Next returns the next list element or nil.
func (e *Element) Next() *Element {
    if p := e.next; e.list != nil && p != &e.list.root {
        return p
    }
    return nil
}

// Prev returns the previous list element or nil.
func (e *Element) Prev() *Element {
    if p := e.prev; e.list != nil && p != &e.list.root {
        return p
    }
    return nil
}

// List represents a doubly linked list.
// The zero value for List is an empty list ready to use.
type List struct {
    root Element // sentinel list element, only &root, root.prev, and root.next are used
    len  int     // current list length excluding (this) sentinel element
}

// Init initializes or clears list l.
func (l *List) Init() *List {
    l.root.next = &l.root
    l.root.prev = &l.root
    l.len = 0
    return l
}

// New returns an initialized list.
func New() *List { return new(List).Init() }

// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *List) Len() int { return l.len }

// Front returns the first element of list l or nil if the list is empty.
func (l *List) Front() *Element {
    if l.len == 0 {
        return nil
    }
    return l.root.next
}

// Back returns the last element of list l or nil if the list is empty.
func (l *List) Back() *Element {
    if l.len == 0 {
        return nil
    }
    return l.root.prev
}

// lazyInit lazily initializes a zero List value.
func (l *List) lazyInit() {
    if l.root.next == nil {
        l.Init()
    }
}

// insert inserts e after at, increments l.len, and returns e.
func (l *List) insert(e, at *Element) *Element {
    n := at.next
    at.next = e
    e.prev = at
    e.next = n
    n.prev = e
    e.list = l
    l.len++
    return e
}

// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *List) insertValue(v interface{}, at *Element) *Element {
    return l.insert(&Element{Value: v}, at)
}

// remove removes e from its list, decrements l.len, and returns e.
func (l *List) remove(e *Element) *Element {
    e.prev.next = e.next
    e.next.prev = e.prev
    e.next = nil // avoid memory leaks
    e.prev = nil // avoid memory leaks
    e.list = nil
    l.len--
    return e
}

// move moves e to next to at and returns e.
func (l *List) move(e, at *Element) *Element {
    if e == at {
        return e
    }
    e.prev.next = e.next
    e.next.prev = e.prev

    n := at.next
    at.next = e
    e.prev = at
    e.next = n
    n.prev = e

    return e
}

// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *List) Remove(e *Element) interface{} {
    if e.list == l {
        // if e.list == l, l must have been initialized when e was inserted
        // in l or l == nil (e is a zero Element) and l.remove will crash
        l.remove(e)
    }
    return e.Value
}

// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *List) PushFront(v interface{}) *Element {
    l.lazyInit()
    return l.insertValue(v, &l.root)
}

// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *List) PushBack(v interface{}) *Element {
    l.lazyInit()
    return l.insertValue(v, l.root.prev)
}

// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertBefore(v interface{}, mark *Element) *Element {
    if mark.list != l {
        return nil
    }
    // see comment in List.Remove about initialization of l
    return l.insertValue(v, mark.prev)
}

// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertAfter(v interface{}, mark *Element) *Element {
    if mark.list != l {
        return nil
    }
    // see comment in List.Remove about initialization of l
    return l.insertValue(v, mark)
}

// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToFront(e *Element) {
    if e.list != l || l.root.next == e {
        return
    }
    // see comment in List.Remove about initialization of l
    l.move(e, &l.root)
}

// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToBack(e *Element) {
    if e.list != l || l.root.prev == e {
        return
    }
    // see comment in List.Remove about initialization of l
    l.move(e, l.root.prev)
}

// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveBefore(e, mark *Element) {
    if e.list != l || e == mark || mark.list != l {
        return
    }
    l.move(e, mark.prev)
}

// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveAfter(e, mark *Element) {
    if e.list != l || e == mark || mark.list != l {
        return
    }
    l.move(e, mark)
}

// PushBackList inserts a copy of an other list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushBackList(other *List) {
    l.lazyInit()
    for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
        l.insertValue(e.Value, l.root.prev)
    }
}

// PushFrontList inserts a copy of an other list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushFrontList(other *List) {
    l.lazyInit()
    for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
        l.insertValue(e.Value, &l.root)
    }
}

参考资料

  1. 数据结构与算法分析